A Novel Regulatory Mechanism of Map Kinases Activation and Nuclear Translocation Mediated by Pka and the Ptp-Sl Tyrosine Phosphatase

نویسندگان

  • Carmen Blanco-Aparicio
  • Josema Torres
  • Rafael Pulido
چکیده

Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser(231) residue, located within the KIM. Upon phosphorylation of Ser(231), PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal-regulated kinase (ERK)1/2 and p38alpha were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Calpha catalytic subunit of PKA, inhibited the cytoplasmic retention of ERK2 and p38alpha by wild-type PTP-SL, but not by a PTP-SL S231A mutant. These findings support the existence of a novel mechanism by which PKA may regulate the activation and translocation to the nucleus of MAP kinases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38α is determined by a kinase specificity sequence and influenced by reducing agents

The protein tyrosine phosphatases (PTPs) PTP-SL, STEP and HePTP are mitogen-activated protein kinase (MAPK) substrates and regulators that bind to MAPKs through a kinase-interaction motif (KIM) located in their non-catalytic regulatory domains. We have found that the binding of these PTPs to the MAPKs extracellular-signal-regulated kinase 1 and 2 (ERK1/2), and p38α is differentially determined ...

متن کامل

PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif.

Protein kinases and phosphatases regulate the activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by controlling the phosphorylation of specific residues. We report the physical and functional association of ERK1/2 with the PTP-SL and STEP protein tyrosine phosphatases (PTPs). Upon binding, the N-terminal domains of PTP-SL and STEP were phosphorylated by ERK1/2, whereas these PT...

متن کامل

Protein tyrosine phosphatase PTP-RR regulates corticosteroid sensitivity

BACKGROUND We have recently reported that protein phosphate 2A (PP2A) inactivation resulted in increased phosphorylation of the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase 1 (JNK1) and glucocorticoid receptors (GR) at Ser(226), thereby reducing GR nuclear translocation and causing corticosteroid insensitivity in severe asthmatics. Protein tyrosine phosphatases (PTPs) are als...

متن کامل

Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase.

Angiotensin II type 2 (AT2) receptors are involved in the inhibition of cell proliferation as well as in apoptosis and neuronal differentiation, through intracellular signalling pathways that remain poorly defined. The present study examines the effect of AT2-receptor stimulation on growth-factor-induced pathways leading to the activation of mitogen-activated protein (MAP) kinases. In N1E-115 n...

متن کامل

Direct suppression of TCR-mediated activation of extracellular signal-regulated kinase by leukocyte protein tyrosine phosphatase, a tyrosine-specific phosphatase.

Leukocyte protein tyrosine phosphatase (LC-PTP)/hemopoietic PTP is a human cytoplasmic PTP that is predominantly expressed in the hemopoietic cells. Recently, it was reported that hemopoietic PTP inhibited TCR-mediated signal transduction. However, the precise mechanism of the inhibition was not identified. Here we report that extracellular signal-regulated kinase (ERK) is the direct target of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 147  شماره 

صفحات  -

تاریخ انتشار 1999